EL34

Output pentode rated for 25W anode dissipation, ntended for use in a.c. mains operated equipment.

PRELIMINARY DATA

	_	•	~	•	В.
-	_	ш		-	ĸ

CAPACITANCES

Cout	7.2	рF
Cin	15.5	pΕ
C _{8-g1}	<1.1	рF
c_{g_1-h}	<1.0	рF
c_{k-h}	11	ρF

CHARACTERISTICS

V _a	250	V
V _{g2}	250	٧
V _{g3}	0	V
la	100	mΑ
	14.9	mΑ
${\sf V_{g_1}}$	–13.5	٧
g _m	11	mA/V
r _a	15	kΩ
$\mu_{g_{1}-g_{2}}$	11	

OPERATING CONDITIONS AS SINGLE VALVE CLASS "A" AMPLIFIER

Pentode connection

V_a	250	V
V_{g_2}	250	V
V _{g3}	0	٧
$\bigvee_{g_1}^{s_0}$	-13.5	٧
R_k	120	Ω
l _a	100	mΑ
•	14.9	mΑ
1g2 Ra	2.0	kΩ
$V_{\text{in},(r,m,s,)}$ ($P_{\text{out}}=50\text{mW}$)	0.5	V
*P _{out}	11	W
Vin (r.m.s.)	8.7	٧
*D _{tot}	10	%

^{*}Pout and Dtot are measured at fixed bias and therefore represent the power output available during the reproduction of speech and music. When a sustained sine wave is applied to the control grid the bias across the cathode resistor will readjust itself as a result of the increased anode and screen-grid currents. This will result in approximately 10% reduction in power output.

OPERATING CONDITIONS FOR TWO VALVES IN PUSH-PULL

Distributed load conditions with screen-grid tapping at 43% of primary turns

$V_{a_+}V_{Rk}$	430	430	٧
R _{g2} (per valve)	1	1	$\mathbf{k}\Omega$
$V_{g_{2+}}V_{Rk}$	425	4 25	٧
l _{a(0)}	2×62.5	2×62.5	mΑ
la (max. sig.)	2×65	2×70	mΑ
l _{g2(0)}	2×5.0	2×5.0	mΑ
lg2 (max. sig.)	2×5.1	2×7.5	mΑ
R _k (per valve)	470	4 70	Ω
$V_{in(g_1-g_1) r.m.s.}$	32	52	٧
R _{a_a}	6.6	6.6	$\mathbf{k}\Omega$
Pout	20	37	W
D _{tot}	0.8	1.3	%

OPERATING CONDITIONS FOR TWO VALVES IN PUSH-PULL

Fixed bias

$V_{\mathbf{b}}$	425	375	V
*R _{g2}	1000	4 70	Ω
V_{g_3}	0	0	V
l _{a(0)}	2×30	2×35	mΑ
la (max. sig.)	2×120	2×120	mΑ
lg2 (0)	2×4.4	2×4.7	mΑ
lg2 (max. sig.)	2×25	2×25	mΑ
V_{g_1}	-38	-32	٧
R _{a_a}	3.4	2.8	kΩ
V _{1n (g1-g1) r.m.s.}	5 4	45	V
Pout	55	44	W
D _{tot}	5.0	5.0	%

^{*}Screen-grid resistor common to both valves.

These operating conditions apply with a stabilised line voltage and allow for a 25V drop in the primary winding of the output transformer at maximum signal. If there is an additional drop of 25V in the h.t. line voltage at maximum signal $P_{\rm out}=45W$ and 36W. The optimum anode-to-anode load under these conditions are $4.0k\Omega$ and $3.8k\Omega$ respectively.

Output pentode rated for 25W anode dissipation, intended for use in a.c. mains operated equipment.

OPERATING CONDITIONS FOR TWO VALVES IN PUSH-PULL

With separate screen-grid supply and fixed bias

	$V_{b(a)}$	500	800	٧
	$V_{b(g_2)}$	400	400	V
	*R _{g2}	750	750	Ω
	V _{g3}	0	0	٧
	l _{a(0)}	2×30	2×25	mΑ
12	la (max. sig.)	2×125	2×91	mΑ
	1	2×4.0	2×3.0	mΑ
	lg2 (max. sig.)	2×25	2×19	mΑ
**	V _{g1}	-36	-39	٧
	R _{a_a}	4.0	11	$\mathbf{k}\Omega$
	V _{in (g1-g1)} r.m.s.	51	47	٧
	Pout	70	100	- W
	D _{tot}	5.0	5.0	%

^{*}Screen-grid resistor common to both valves.

These operating conditions apply with stabilised line voltages and allow for a 25V drop in the primary winding of the output transformer at maximum signal. If there is an additional drop of 25V in the line voltages at maximum signal $P_{out}{=}58W$ and 90W. The optimum anode-to-anode load under these conditions are $5.0k\Omega$ and $11k\Omega$ respectively.

OPERATING CONDITIONS FOR TWO VALVES IN PUSH-PULL

Cathode bias

$V_{\rm h}$		375	٧
*R _{g2}		470	Ω
†R _k		130	Ω
V_{g_3}		0	٧
I _{a(0)}	- 175	2×75	mΑ
la (max. sig.)		2×95	mΑ
l _{g2(0)}		2×11.5	mΑ
ીg₂ (max.ુsig.)ાા		2×22.5	mΑ
R _{a_a}		3.4	kΩ
V _{in(g1-g1)} r.m.s.		42	٧
Pout		35	W
D _{tot}		5.0	%

^{*}Screen-grid resistor common to both valves.

These operating conditions allow for a 20V drop in the primary winding of the output transformer and a 5V drop in the h.t. line voltage at maximum signal.

[†]Common cathode bias resistor.

OPERATING CONDITIONS AS SINGLE VALVE CLASS "A" AMPLIFIER

Triode connection (g₂ connected to a, g₃ to k)

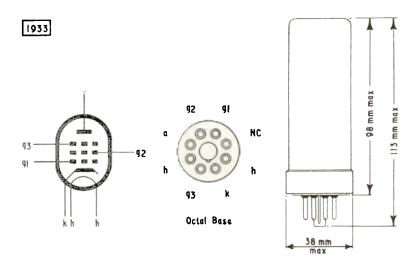
$V_{a_{+}}V_{Rk}$ 37	75	٧
V _{g3}	0	V
R _k 33	70	Ω
	70	mΑ
V_{g_1}	26	٧
R _a	3.0	kΩ
$V_{in\ (r.m.s.)}$ ($P_{out}=50mW$)	1.7	٧
P _{out}	6.0	W
Vin (r.m.s.)	18.9	Ý
Dtot	8.0	%

OPERATING CONDITIONS FOR TWO VALVES IN PUSH-PULL

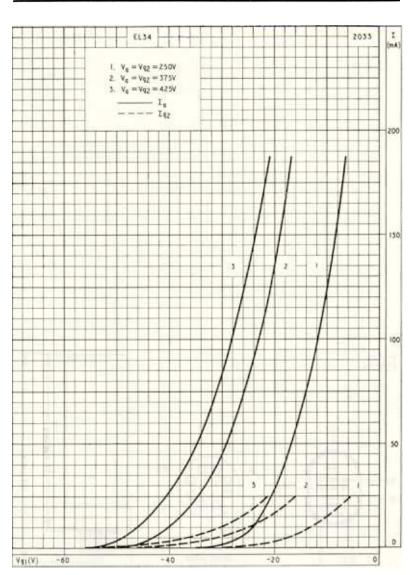
Triode connection (g₂ connected to a, g₃ to k)

$V_{a}V_{Rk}$	400	430	٧
V_{g_3}	0	0	٧
*R _k	220	†250	Ω
l _{a(0)}	2×65	2×64	mΑ
la (max. sig.)	2×71	2×67	mΑ
V_{g_1}	-29	-32	٧
R _{a_a}	5.0	10	kΩ
V _{in (g1-g1)} r.m.s.	44	48	٧
Fout	16	14	W
D _{tot}	3.0	<1.0	%

^{*}Common cathode bias resistor.


LIMITING VALUES

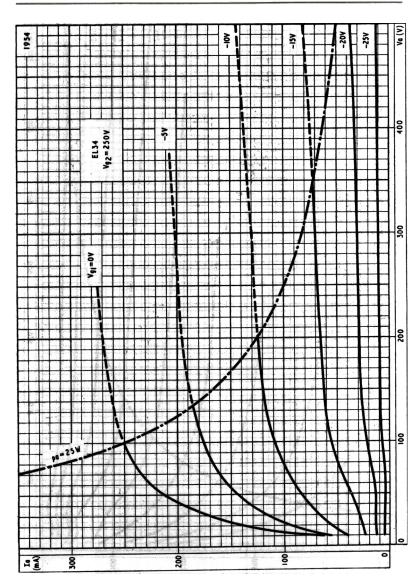
$V_{a(b)}$ max.	2.0	k٧
Va max.	800	٧
p _a max.	25	W
pa max. (max. signal speech and music)	27.5	W
$V_{g_2(b)}$ max.	800	V
V _{g2} max.	425	٧
pg ₂ max.	8.0	W
I _k max.	150	mΑ
V_{g_1} max. $(I_{g_1} = +0.3 \mu A)$	-1.3	٧
R _{g1-k} max. (cathode bias)	700	$\mathbf{k}\Omega$
R _{g1-k} max. (fixed bias)	500	kΩ
V _{h-k} max.	100	V
Rh k max.	20	kΩ



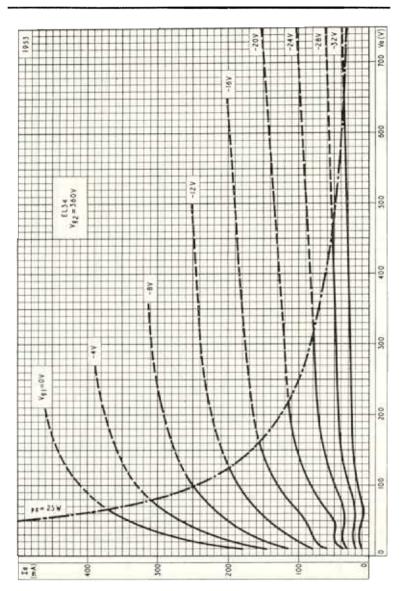
[†]Un-bypassed.

EL34

EL34

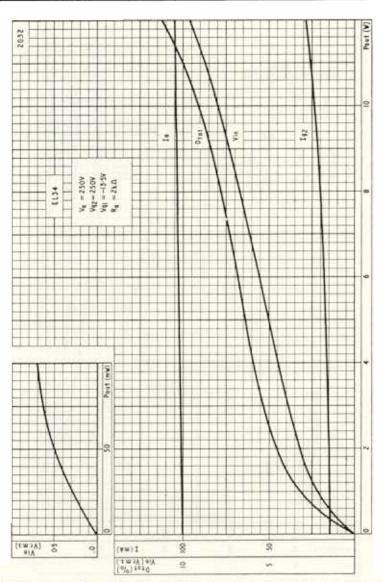


ANODE AND SCREEN-GRID CURRENT PLOTTED AGAINST CONTROL GRID VOLTAGE



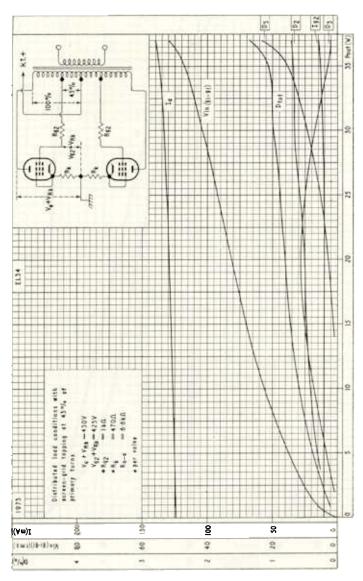
EL34

Output pentode rated for 25W anode dissipation, intended for use in a.c. mains operated equipment.

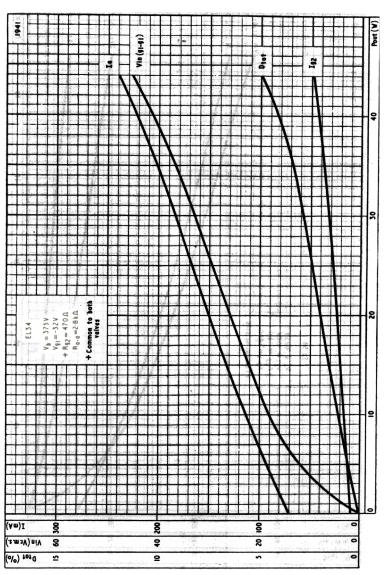

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL-GRID VOLTAGE AS PARAMETER Vg2=250V

ANODE CURRENT PLOTTED AGAINST ANODE VOLTAGE WITH CONTROL GRID VOLTAGE AS PARAMETER $V_{\rm g_2}{=}360\text{V}$

EL34

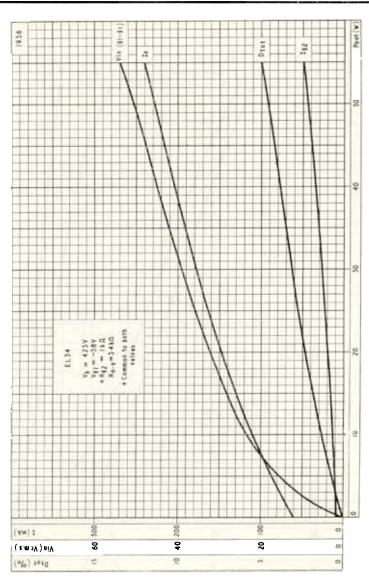


PERFORMANCE OF EL34 WHEN USED AS A SINGLE VALVE CLASS "A"
AMPLIFIER


Output pentode rated for 25W anode dissipation, intended for use in a.c. mains operated equipment.

PERFORMANCE OF TWO EL34 IN PUSH-PULL WITH DISTRIBUTED LOAD CONDITIONS. SCREEN-GRID TAPPING AT 43% OF PRIMARY TURNS

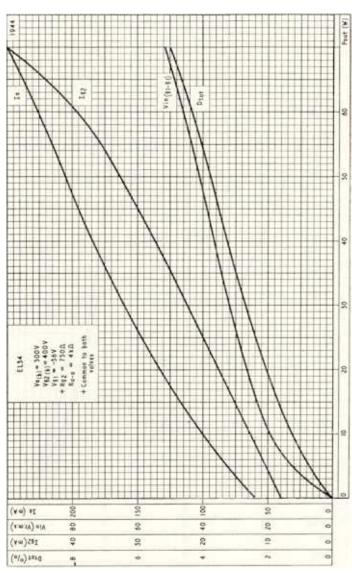
EL34



PERFORMANCE OF TWO EL34 IN PUSH-PULL WITH FIXED BIAS AND $V_b \! = \! 375 \text{V}$

EL34

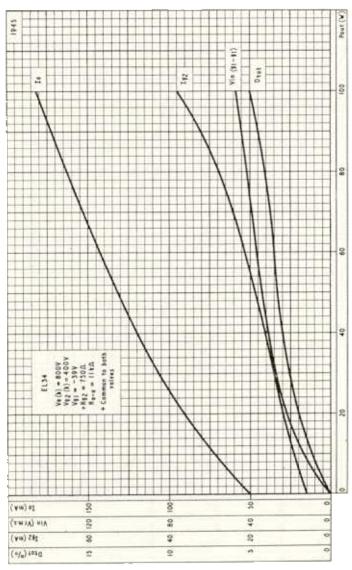
Output pentode rated for 25W anode dissipation, intended for use in a.c. mains operated equipment.



PERFORMANCE OF TWO EL34 IN PUSH-PULL WITH FIXED BIAS AND $V_{h}\!=\!425V$

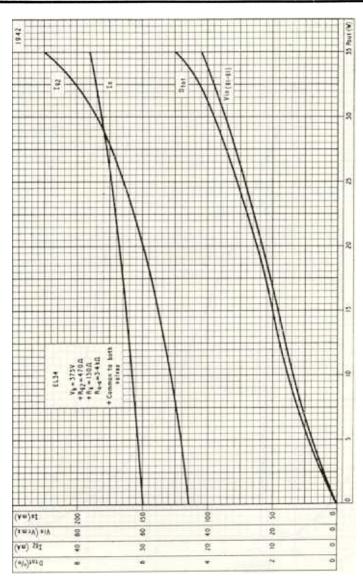
EL34

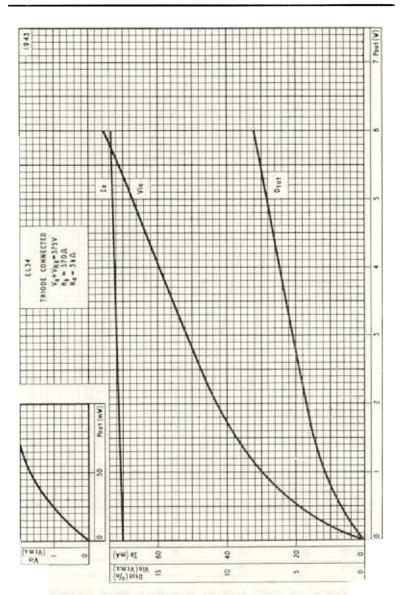
Output pentode rated for 25W anode dissipation, intended for use in a.c. mains operated equipment.



PERFORMANCE OF TWO EL34 IN PUSH-PULL WITH SEPARATE ANODE AND SCREEN-GRID VOLTAGE SUPPLIES AND FIXED BIAS $V_{a_{(b)}}{=}500V$, $V_{g_{2}(b)}{=}400V$

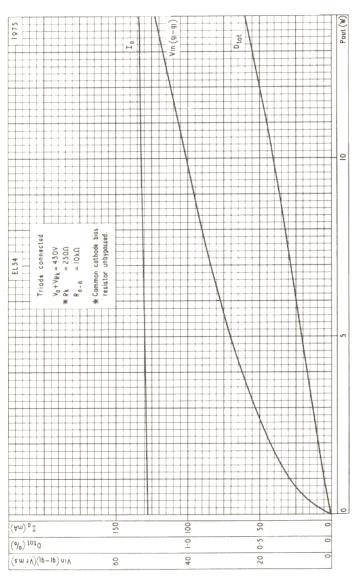
EL34


OUTPUT PENTODE


PERFORMANCE OF TWO EL34 IN PUSH-PULL WITH SEPARATE ANODE AND SCREEN-GRID VOLTAGE SUPPLIES AND FIXED BIAS $V_{a_(b)}{=}800V$, $V_{g_2(b)}{=}400V$

EL34

PERFORMANCE OF TWO EL34 IN PUSH-PULL WITH CATHODE BIAS AND $V_b\!=\!375V$



PERFORMANCE OF SINGLE EL34 TRIODE CONNECTED

EL34

Output pentode rated for 25W anode dissipation, intended for use in a.c. mains operated equipment.

PERFORMANCE OF TWO EL34 IN PUSH-PULL TRIODE CONNECTED